Analysis of the modulation by serotonin of a voltage-dependent potassium current in sensory neurons of Aplysia.

نویسندگان

  • J A White
  • D A Baxter
  • J H Byrne
چکیده

Potassium currents in pleural sensory neurons of Aplysia were studied under control conditions and in the presence of serotonin (5-HT). Using pharmacological techniques we isolated a current that we refer to as IK,V. Although it is not known whether IK,V represents a distinct type of membrane channel, we described its properties using a Hodgkin-Huxley type model. The effects of 5-HT on IK,V were complex. 5-HT decreased by 50% the steady-state magnitude (Iss) of IK,V in response to a voltage-clamp pulse from -50 mV to +20 mV. In addition, 5-HT significantly slowed both activation kinetics (the time constant of activation was increased by 29% at +20 mV) and inactivation kinetics (the time constant of inactivation was increased by 518% at +20 mV). Mathematical descriptions of IK,V in control conditions and in the presence of 5-HT were used to estimate the relative contribution of serotonergic modulation of IK,V to the total 5-HT-induced modulation of membrane currents. Effects of 5-HT on IK,V account for more than 87% of the 5-HT-induced reduction in outward current during the first 20 ms of a voltage-clamp pulse to +20 mV. This result implies that 5-HT exerts many of its effects on spike width in sensory neurons via modulation of IK,V. Effects of 5-HT on IK,V are consistent with a model in which the maximal conductance underlying the current is decreased by 50%, and the rate constants between open and closed states of both the activation and inactivation processes are diminished in magnitude across all membrane potentials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica.

Behavioral sensitization of the gill-withdrawal reflex of Aplysia is the result of a prolonged increase in transmitter release from the presynaptic terminals of sensory neurons. Earlier work suggested that this presynaptic facilitation might be mediated by a serotonin-sensitive adenylate cyclase in the sensory neuron terminals. Here we present evidence that presynaptic facilitation results from...

متن کامل

Activators of protein kinase C mimic serotonin-induced modulation of a voltage-dependent potassium current in pleural sensory neurons of Aplysia.

1. In the pleural mechanoafferent sensory neurons of Aplysia, serotonin (5-HT)-induced spike broadening consists of at least two components: a cAMP and protein kinase A (PKA)-dependent, rapidly developing component and a protein kinase C (PKC)-dependent, slowly developing component. Voltage-clamp experiments were conducted to identify currents that are modulated by PKC and thus may contribute t...

متن کامل

Fine tuning of neuronal electrical activity: modulation of several ion channels by intracellular messengers in a single identified nerve cell.

The identified neurone R15 in the abdominal ganglion of the marine mollusc, Aplysia californica, exhibits a rhythmic bursting pattern of electrical activity. This pattern, which is generated endogenously by the interaction of several voltage- and time-dependent ion currents in R15's membrane, is subject to long-term modulation by synaptic stimulation and application of several neurotransmitters...

متن کامل

Modulation of a transient K+ current in the pleural sensory neurons of Aplysia by serotonin and cAMP: implications for spike broadening.

To study the contribution of cAMP to the spike broadening produced by serotonin (5-HT) in the pleural sensory neurons of the tail withdrawal reflex, we utilized two phosphodiesterase-resistant cAMP analogs: the Sp diastereomer of cyclic adenosine 3',5'-monophosphothioate (Sp-cAMP[S]), which activates protein kinase A, and the antagonist Rp diastereomer of cyclic adenosine 3',5'-monophosphothioa...

متن کامل

Modulation of the serotonin-sensitive potassium channel in Aplysia sensory neurone cell body and growth cone.

Using single-channel recording, we have been able to obtain some insight into the molecular mechanism of a modulatory transmitter action in Aplysia sensory neurones. Our results show that serotonin produces a slow EPSP and increases action potential duration in the sensory neurones by producing prolonged closures of the S potassium channel. Such closures appear to be mediated by cyclic AMP-depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 66 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1994